
MORPHOLOGICAL-BASED ADAPTIVE SEGMENTATION AND QUANTIFICATION OF
CELL ASSAYS IN HIGH CONTENT SCREENING

J. Angulo∗

Centre de Morphologie Mathématique
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35 rue Saint-Honoré, 77305 Fontainebleau, France

B. Schaack

Laboratoire BioPuces
CEA Grenoble - DSV/ iRTSV

17 rue des Martyrs, 38054 Grenoble, France

ABSTRACT

In fluorescence-labelled cell assays for high content screen-

ing applications, image processing software is necessary to

have automatic algorithms for segmenting the cells individ-

ually and for quantifying their intensities, size/shape param-

eters, etc. Mathematical morphology is a non-linear image

processing technique which is proven to be a very powerful

tool in biomedical microscopy image analysis. This paper

presents a morphological methodology based on connected

filters, watershed transformation and granulometries for seg-

menting cells of different size, contrast, etc. In particular,

the performance of the algorithms is illustrated with cell im-

ages from a toxicity assay in three-labels (Hoechst, EGFP,

Phalloı̈din) on nanodrops cell-on-chip format.

Index Terms— quantitative cytology, mathematical mor-

phology, watershed segmentation, multi-scale gradient, gran-

ulometry

1. INTRODUCTION

High content screening (HCS) refers to technological plat-

forms for parallel cells growing in multi-well plates (or in

other supports as cell on chip) and fluorescent labelling of

proteins of interest (immuno-fluorescence with antibodies,

GFP-tagged proteins), together with image capture by auto-

mated microscopy and subsequent cell image analysis. HCS

is of interest for the discovery of new cellular biology mech-

anisms (i.e., using siRNA), new pharmaceuticals (i.e., mass

screening of potential active molecules) or for the develop-

ment of new tests for diagnostic/prognostic, for toxicology

tests (i.e., evaluation of different compounds at different con-

centrations).

Cell markers are fluorescent dyes which are extremely

specific that will bind to only a few particular proteins in a

cell. After image acquisition of a multivariate image by flu-

orescence microscope (confocal or not), accurate analysis of

the morphological changes and quantification of fluorescence
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parameters require the development of algorithms dedicated

to: 1) automatic image processing (segmentation and fea-

ture extraction of individual cells and cell populations) and,

2) multi-parametric statistical data analysis and classification.

Image segmentation of cells [1] [2] [3] is the most critical step

to achieve a robust high throughput system which will be able

to segment thousands of cell images without needing a man-

ual interaction. Errors in segmentation process may propagate

to the feature extraction and classification.

Mathematical morphology [4] is a non-linear image pro-

cessing technique which is proven to be a very powerful tool

in biomedical microscopy image analysis [5]. This paper

presents a flexible morphological methodology based on con-

nected filters [6, 7], watershed transformation [8] and granu-

lometries [4] for adaptively segmenting cells of different size,

contrast, etc. We try also to minimise the number of param-

eters to be set in the algorithms. Three main steps of cell

image processing: i) pre-quantification, ii) cell segmentation,

iii) quantification, will be detailed in the paper.

(a) (b)

(c)

Fig. 1. Three examples of cell images for a toxicity assay: (a)

negative control, (b) low concentration of toxic compound,

(c) high concentration.
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In particular, the performance of our algorithms is il-

lustrated with cell images from a toxicity assay in three

fluorescent-labels on nanodrops cell-on-chip format [9].

More precisely, it deals with a toxicology screening in HepG2

hepatocellular carcinoma cells: genetically engineered cells

to express green fluorescent protein reporter gene GFP under

the control of Hsp70 stress promoters [10]. At day 2 the toxic

Arsenate is added to the assay and at day 4 the cells are PFA

fixated on the chip and Hoechst/Phalloidin labelled before be-

ing imaged. Fig. 1 shows three examples of images from this

toxicity assay. Phalloı̈din is a cytoplasm marker (label against

F-actin), fcyto, useful to segment the cell contours (which are

however textured and presenting overlapped cells). Hoescht

is a nucleus marker (label DNA), fnul, applied for detecting

the cell nuclei (markers of individual cells). The intensity of

fluorescence of the EGFP, ftarg , is used to quantify the effect

of the toxics. In Fig. 2 the three fluorescent components of a

cell image are given. These images are typical of any HCS

experiment, which usually includes a marker for the nucleus,

a marker for the cytoplasm and one or several markers as-

sociated to the target molecules. It is observed that the cell

images present different size and shape, variable contrast and

inhomogeneous background. Consequently, automatic image

processing algorithms must be able to take into account this

variability in order to achieve robust results.

2. PRE-QUANTIFICATION: ESTIMATE OF
SIZE/CONTRAST PARAMETERS FOR

SEGMENTING

The aim of this preliminary step is to compute a rough esti-

mate of the size/contrast image structures of cells and there-

fore to automatically fix the parameters of the different mor-

phological filters needed during the subsequent segmentation

algorithm. There are two main connected operators for filter-

ing the cell images: the area opening [7], γa
na

, and the con-

trast opening [6], γh
nh

. These operators removes the bright

structures which do not verify the criterion associated respec-

tively to the parameter of surface area or of contrast, but with-

out modifying the contours of the remaining structures (i.e.,

without blurring). In addition the fast implementations using

hierarchical queues allow to apply several filters on the same

image without time penalty.

The approach of pre-quantification is based on the no-

tion of granulometry [4], i.e., a family of increasing open-

ings or in other words, a series of area (resp. contrast)

openings with increasing values of na (resp. nh). Then

the pattern spectrum by area is defined as PSa(f, na) =
M(γa

na
(f))−M(γa

na+stepa
(f))

M(f) , where M(f) is the volume of

the image f ; nmin
a ≤ na ≤ nmax

a , nmin
a , nmax

a and stepa

are the size of the minimal area opening, of the maximal area

opening and the increasing size of the successive area open-

ings. Typically, we have fixed nmin
a = 100, nmax

a = 1000

(a) (b)

(c) (d)

Fig. 2. Splitting the three “colour” components of example (c)

from Fig. 1: (a) Hoescht (blue component), fnuc, (b) EGFP

(green component), ftarg−1, (c) Phalloı̈din (red component),

fcyto. Examples of pre-quantification: comparative of 15 ex-

amples of area pattern spectrum for fcyto (see details in the

text).

and stepa = 100 pixels. In Fig. 2(d) are given the curves

PSa(fcyto, na) for 5 examples of each of the three popula-

tion typologies represented in Fig. 1 (blue for negative control

images, green for low toxic and red for high toxic). Using

these curves, and by computing the average of the distribution

as well as the slope of the beginning, it is possible to find the

“optimal” size of area opening which filters out the texture

structures without removing the cells. The pattern spectra by

area is obtained for fcyto and for fnuc. In a similar way, a

pattern spectrum by contrast is computed for fcyto. In general

cases, the pre-quantification can be applied for each image

or, working in a training phase, for a selection of cell images

from the specific problem and to consider that the estimated

parameters of size and contrast operators are then fixed for

the rest of images.

3. ADAPTIVE SEGMENTATION OF INDIVIDUAL
CELLS

The segmentation of individual cells is based on the water-

shed transformation [8]. Two inputs are needed in order to

apply this transformation: 1) an inner marker for each object

of interest (here the cells) and a global outer marker for the

“background”; 2) a gradient function representing the energy

of the contours (here the contours of cytoplasms). In Fig. 3

are illustrated the intermediate images of the different seg-

mentation steps.

Detecting the nuclei (cell markers): The first step con-

sists in removing the non-uniform background by a top-hat
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Top: Algorithm of cell segmentation (see the text for

details), (a) f2
nuc, (b) f3

nuc in white and f4
nuc in red, (c) f2

cyto,

(d) f3
cyto, (e) fcells, (f) fcells superimposed on original colour

image. Bottom: Result of cell segmentation for images of

Fig. 1, (g) negative control, (h) low concentration of toxic

compound.

transformation: f1
nuc = fnuc − γnbg(fnuc), where the open-

ing uses an isotropic structuring element (a disk) of large

diameter nbg (typically, 10 times the estimate of cell di-

ameter). The texture of the nuclear structure is removed

by an area opening, f2
nuc = γa

ntext(f
1
nuc), where ntext

is smaller than the estimate of nuclear surface area (typ-

ically, 75%). The image is then thresholded to obtain a

binary mask of nuclei, f3
nuc = Th[u,max](f2

nuc) (the step

is not critical on this filtered image and the value is fixed

for instance to u = 5). The nuclear markers are finally

achieved by computing the maxima of the distance func-

tion [4], f4
nuc = Max(γh

nsize2(dist(γa
nsize1(f

3
nuc)))). Note

that, before obtaining the maxima, the binary image is pre-

viously regularised with a small opening and the distance

function is also filtered with a contrast opening. The parame-

ters of both transformations are not critical and can be easily

determined (i.e., nsize1 is the minimal diameter accepted

for a nucleus and nsize2 is the minimal radius for a nucleus

when overlapped to another bigger one).

Segmenting the cytoplams (cell contours): The pre-

processing of the image fcyto is quite similar to that for the

previous one. The fluorescence uneven background is re-

moved by a standard top-hat: f1
cyto = fcyto − γnbg(fcyto).

The texture and irregularities of cell structures are simplified

by a sequence of an area opening followed by a contrast

opening: f2
cyto = γh

nstrh(γa
nstra(f1

cyto) (both size and con-

trast parameters, nstra and nstrh are estimated respectively

from PSa(fcyto) and PSh(fcyto)). In mathematical mor-

phology, a gradient is obtained as the different between an

erosion and a dilation with an isotropic structuring element

of size 1, i.e., �(f) = δ1(f) − ε1(f). The direct computation

of the gradient on the image f2
cyto is not useful for water-

shed segmentation because, even after the filtering steps,

the variations of fluorescence inside a cell are often greater

than the variation associated to the contours between cells.

In order to solve this problem, we propose to compute a

multi-scale gradient, which is obtained as the sum of the gra-

dient for successive contrast-based filtered versions: f3
cyto =

(�(f2
cyto) + �(γh

nstrh(f2
cyto)) + �(γh

2×nstrh(f2
cyto)))/3. This

gradient is more regular than �(f2
cyto) and contours between

cells are enhanced. Note that we can not calculate only the

gradient �(γh
2×nstrh(f2

cyto)) since low contrasted cells do not

appear after this strong filter.

This gradient is then used for the watershed, grad =
f3

cyto. The image f4
nuc corresponds to the inner markers

for the watershed transformation, mrkin. The background

marker will be obtained from the complement of a dilated ver-

sion of the thresholded cells: mrkout = [δ5(Th[3,max](f2
nuc))]

c.

The final marker image is the binary image supremum of

both images: mrk = mrkin ∨ mrkout. The final contours

of the cells are finally obtained by watershed segmentation:

fcells = wshed(grad,mrk). In Fig 3 are given the results

of cell segmentation for the current examples. The same al-

gorithm have used for segmentation hundreds of cell images.
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We have evaluated precisely the algorithm on 15 repre-

sentative images, by manualy counting the number of correct

segmented, overcut or undetected cells and the average error

(i.e., proportion of wrong segmented cells in one image) is be-

tween 5% and 8%. The fluorescence images associated to the

protein target, like ftarg in our examples, can be also used to

help the segmentation of the cytoplasm. In fact, in many HCS

applications, there is not specific cytoplasm marker and it is

indispensable to use the target images for cell segmentation.

In our particular problem of toxicology, we have evaluated

also the interest of combining a gradient f3
cyto and a similar

algorithm on ftarg and in most of cases the segmentation is

improved.

4. QUANTIFICATION: FROM PARAMETERS OF
INDIVIDUAL CELLS TO POPULATION

PARAMETERS

Once the individual cells have been segmented, all the pa-

rameters of fluorescence intensity from the target images can

be computed for each cell. In addition, all the standard pa-

rameters for describing the cell morphology: size/shape of

cytoplasm, chromatin texture of the nucleus, etc. can be also

calculated. We can also compute more global parameters,

associated for instance to the cell population. In particu-

lar, using morphological granulometries by isotropic open-

ings/closings, it is possible to calculate from the binary image

of segmented cells, fcells, the distribution of size/shape of

cells (according to the openings) and the evolution of the spa-

tial aggregation of cells (according to the closings). In Fig. 4

are given the results for a selection of 5 images for each stud-

ied phenotype. As we can observe, using the positive part of

the pattern spectrum (openings), we can easily identify the

three phenoytpes. The negative part of the curves (closing)

is not meaningful in this problem since the culture is done in

3D nanodrops and there is no phenomenon of aggregation.

5. CONCLUSION AND PERSPECTIVES

We have presented an algorithm for accurate segmentation

of fluorescence-labelled cells in HCS applications. A step

of pre-quantification allows to automatically setting some

parameters of the algorithms in order to eliminate the need

of any human interaction. We have also given an example

of morphological descriptor associated to the cell population

which is useful for phenotypic screening. The developments

have been illustrated with results from a toxicology assay

using nanodrops cell-on-chip format. We are presently using

this methodology for analysing the cell images of other HCS

projects, using different types of cells, different target mark-

ers, etc. We are also enriching the segmentation methodology

by associating to the unsupervised watershed algorithm prior

information about the models of cell shape.

Fig. 4. Examples of population description using granulome-

tries (i.e., pattern spectra by opening/closing) of five examples

of segmented cells for each phenotype.
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